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a b s t r a c t

In this paper, the dynamics of two dimensional elastic particles in a Newtonian viscous
shear flow is studied numerically. To describe the elastic deformation, an evolution equa-
tion for the Eulerian Almansi strain tensor is derived. A constitutive equation is thus con-
structed for an incompressible ‘‘Neo–Hookean” elastic solid where the extra stress tensor
is assumed to be linearly proportional to the Almansi strain tensor. The displacement field
does not appear in this formulation. A monolithic finite element solver which uses Arbi-
trary Lagrangian–Eulerian moving mesh technique is then implemented to solve the veloc-
ity, pressure and stress in both fluid and solid phase simultaneously. It is found that the
deformation of the particle in the shear flow is governed by two non-dimensional param-
eters: Reynolds number (Re) and Capillary number (Ca, which is defined as the ratio of the
viscous force to the elastic force). In the Stokes flow regime and when Ca is small
(Ca < 0:65), the particle deforms into an elliptic shape while the material points inside
the particle experience a tank-treading like motion with a steady velocity field. The defor-
mation of the elastic particle is observed to vary linearly with Ca, which agrees with the-
oretical results from a perturbation analysis. Interactions between two particles in a
viscous shear flow are also explored. It is observed that after the initial complicated inter-
actions, both particles reach an equilibrium elliptic shape which is consistent with that of a
single particle.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In a solid–liquid suspension, interactions between the solid particulates and the viscous liquid determine the rheological
behavior of the suspension. It is known that the clusters and anisotropic particle micro-structures are the result of particle
migrations produced by particle–particle and particle–wall interactions[1–3]. When solid particles are deformable, the elas-
ticity of particles may induce more complicated fluid–solid interactions which largely affects the behaviors of the mixture.
Generally, elastic particles are deformed by viscous stresses from the bulk fluid. The extent of the deformation depends on
the applied hydrodynamic force intensity on the particle surface, particle geometry and material properties of elastic parti-
cles. In the past decades, there has been an increasing interest in the dynamics of mesoscopic deformable objects in a viscous
fluid flow [4–6], particularly with applications in biological systems where a number of cases can be characterized by fluid–
structure interactions.

A well-known example of the fluid–structure interaction at mesoscopic scale is the dynamics of fluid vesicles in a viscous
shear flow. A fluid vesicle (or capsule) is a particle with a lipid membrane which encloses a liquid drop [4]. Such a particle can
deform when freely suspended in a viscous shear flow due to the coupling of the elasticity of the membrane, the constant
volume and surface area, as well as the hydrodynamic forces within and outside the membrane. The mechanisms of vesicle
deformations are also helpful to understand the basic physical aspects of the complicated biological cells. For example, the
. All rights reserved.
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red blood cell (RBC) can be regarded as a biconcave discoid vesicle with a bilayer of lipids into which proteins are embedded.
The behavior of the RBC in viscous shear flows has been investigated extensively in medical applications [21,22]. Theoretical
works [23–25] have shown that the vesicle experiences either a steady ellipsoidal tank-treading motion or an unsteady flip-
ping motion, depending on different physical properties and flow conditions. On the other hand, numerical simulations and
analysis have also been performed to solve dynamics of vesicles with large deformations. For example, Eggleton and Popel
[26] employed an immersed boundary method to simulate asymptotic behaviors of RBC in a simple shear flow with an
increasing ratio of the dilation modulus to the extensional modulus. At vanishing Reynolds numbers, Pozrikidis and co-work-
ers[27–29] used a boundary element method to study transient deformations of vesicles with various shapes and membrane
properties in simple shear flow. Recently, a hybrid method which incorporate the immersed boundary concept into the lat-
tice Boltzmann method with a multi-block mesh refinement strategy is used by Sui et al. [30] to study spherical vesicles
deforming in a shear flow at both small and moderate Reynolds numbers.

Besides experimental and theoretical approaches, there are extensive works in developing efficient numerical methods to
simulate interactions between fluid and elastic objects. In general, these methods can be roughly classified into two catego-
ries: non-boundary conforming methods and boundary conforming methods. The non-boundary conforming methods em-
ploy a mixture of Eulerian and Lagrangian descriptions. The Navier–Stokes (N–S) equations are solved on a fixed Eulerian
mesh, while the embedded boundaries are tracked by a set of freely moving Lagrangian points. To account for the no-slip
conditions at fluid–solid interfaces, appropriate forcing density terms are added to the N–S equations by using proper inter-
polations between the solution variables at the fixed grid points in the vicinity of the moving boundary and the nearest
Lagrangian points[7–11]. This treatment greatly simplifies the mesh generation, and simulates moving boundaries in a more
straightforward manner [12]. However, the interpolation between the moving boundary and the fixed grid will inevitably
introduce additional numerical errors which usually lower the accuracy of the solution. Moreover, the conditions at the
fluid–solid interface are not exactly satisfied in these methods.

On the other hand, only one mesh set is used in the boundary conforming methods, adapting to the complex geometries
of the deforming and/or moving objects. The governing equations are solved on the moving mesh conformed to the fluid–
solid boundary movement. Two widely used techniques are the Arbitrary Lagrangian–Eulerian (ALE) technique [13] and the
space-time finite element method [14]. For fluid–structure interactions, it is common to use one solver for the N–S equations
in the fluid phase and another for the solid phase, and iterate between them until the solution converges [15–18]. The iter-
ative strategies usually employ either loose coupling partitioned algorithms [15,16] or strong coupling up to simultaneous
solutions [17,18]. In both methods, subiteration can be performed for better convergence. For particulate flows with deform-
able objects undergoing large deformations, however, the loose coupling partitioned algorithms may be difficult to converge
due to the very strong fluid–structure interactions [19]. For strong fluid–structure interactions, robust simultaneous solution
procedures are needed to ensure the stability and convergence of the time accurate coupled solutions [19,20].

In the present paper, we develop a new finite element method to solve the dynamics of two-dimensional (2D) elastic par-
ticles deforming in a viscous shear flow, which is governed by the Reynolds number and the Capillary number. Different from
the capsules, here the solid particles are assumed to be bulk elastic objects consisting of the ‘‘Neo–Hookean” material. This
method can be extended to deal with vesicles with an elastic membrane of finite thickness. In comparison with the previous
treatments, the Eulerian Almansi strain tensor is introduced to describe the elastic deformations. Thus, the unknown vari-
ables in both fluid and solid phase are the velocity, pressure and stress, and the displacement field does not appear in the
formulation. By using an Arbitrary Lagrangian–Eulerian (ALE) finite element formulation, we then implement a monolithic
solver to solve two of the phases simultaneously. In this method, consistent time integration schemes and discretizing meth-
ods can be employed for all physical variables, eventually leading to a linear system which can be solved by efficient iterative
schemes with appropriate preconditioners.

The paper is organized as follows. In Section 2, we first derive an evolution equation for the Eulerian Almansi strain tensor.
For the ‘‘Neo–Hookean” elastic material, a constitutive equation is then established by assuming that the extra stress tensor
is linearly proportional to the Almansi strain tensor. Next, we use an ALE finite element weak formulation for the governing
equations. In Section 3, both single particle deformation and particle–particle interactions in a Newtonian viscous shear flow
are investigated numerically. A perturbation analysis is also performed to characterize the single particle deformation in the
limit of small Capillary number. The results of the work are summarized in Section 4.

2. Mathematical formulation and numerical algorithm

Consider the deformation of a 2D elastic particle suspended in an incompressible Newtonian viscous fluid which is con-
fined between two parallel plates as shown in Fig. 1. An initially circular elastic particle with diameter dp is placed at the
center of the channel. The solid particle is assumed to be incompressible and neutrally buoyant. The width of the channel
is H and the length is 2H. The upper and bottom walls are moving in the opposite directions with the same velocity U. Thus,
the shear rate of the flow is _c ¼ 2U=H.

The fluid flow is governed by the N–S equations
r � vf ¼ 0; ð1Þ

qf
@vf

@t
þ ðvf � rÞvf

� �
¼ r � rf ; ð2Þ



Fig. 1. Schematic for an elastic particle deforming in a viscous shear flow bounded by two moving walls.
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where vf is the fluid velocity, qf is the fluid density, and rf is the stress tensor defined as
rf ¼ �pf Iþ sf ¼ �pf Iþ lf ½rvf þ ðrvf ÞT �; ð3Þ
where pf is the pressure, sf is the extra stress tensor in the fluid, and lf is the dynamic viscosity.
In the incompressible elastic solid, the conservation of mass and momentum also require that
r � vs ¼ 0; ð4Þ

qs
@vs

@t
þ ðvs � rÞvs

� �
¼ r � rs; ð5Þ
where vs is the solid velocity, qs is the solid density, and rs is the total solid stress tensor. For an incompressible solid, the
total stress rs can be decomposed into an isotropic pressure part and an extra stress part
rs ¼ �psIþ ss: ð6Þ
Instead of using the usual constitutive relation where the extra stress tensor ss is proportional to the Cauchy–Green strain
tensor (as a function of the gradient of the displacement field us with respect to the reference configuration), here we derive
a new constitutive equation for ss. Starting from the displacement–velocity relationship
Dus

Dt
¼ vs; ð7Þ
where D=Dt is a material derivative, an evolution equation for tensor S can be derived (see Appendix A)
@S
@t
þ ðvs � rÞSþ SðrvsÞT þ ðrvsÞS ¼

1
2
½rvs þ ðrvsÞT �; ð8Þ
where ðrvÞij ¼ @v j=@xi and S is the so called Eulerian Almansi strain tensor
S ¼ 1
2
½rus þ ðrusÞT �rusðrusÞT �: ð9Þ
We may next introduce a constitutive relation for a ‘‘Neo–Hookean” elastic material
ss ¼ 2gsS; ð10Þ
where gs is the shear modulus of the solid. Thus, the combination of Eqs. (8) and (10) leads to
ss
D � @ss

@t
þ ðvs � rÞss þ ssðrvsÞT þ ðrvsÞss ¼ gs½rvs þ ðrvsÞT �; ð11Þ
where ss
D

is the so-called lower-convected time derivative which is known to be objective [31,32]. Particularly, this derivative
can be regarded as a rate of change following the material which takes into account the translational and rotational motion
of the material, as well as the rate of deformation [33]. Eq. (11) serves as the constitutive equation for an elastic solid. In
particular, it should be noted that the displacement field does not directly appear in this constitutive equation.

We may non-dimensionalize the governing equations by choosing the characteristic velocity scale _cdp, the length scale dp,
the time scale _c�1, the pressure and stress scale lf

_c. Here we keep the same notation for the dimensionless variables as their
dimensional counterparts. The governing equations (Eqs. (2), (3), (5) and (11)) are reduced to
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Re
@vf

@t
þ vf � rvf

� �
¼ �rpf þr � sf ; ð12Þ

sf ¼ rvf þ ðrvf ÞT ; ð13Þ

Re
@vs

@t
þ vs � rvs

� �
¼ �rps þr � ss; ð14Þ

Ca
@ss

@t
þ ðvs � rÞss þ ssðrvsÞT þ ðrvsÞss

� �
¼ rvs þ ðrvsÞT ; ð15Þ
where Re ¼ q _cd2
p=lf is the Reynolds number, and Ca ¼ lf

_c=gs is the Capillary number which represents the ratio of the viscous
force in the fluid and the elastic force in the solid. It should be pointed out that this definition of Ca is different from that of fluid
vesicles because here gs is the bulk shear modulus (with a unit N/m2) instead of the membrane shear modulus (with a unit N/m)
used in vesicles. Since the particles are neutrally buoyant, the densities of the solid and fluid are the same, qf ¼ qs ¼ q. The
dimensionless continuity equations for the fluid and solid have the same form as Eqs. (1) and (4), respectively.

At the fluid–solid interface, coupling conditions are required for the solutions in the two phases. The velocity should sat-
isfy the no-slip condition
vf ¼ vs: ð16Þ

The traction force is required to be continuous across the interface
rf � n ¼ rs � n; ð17Þ

where n is the unit normal vector at the interface.

On the moving walls, no-slip boundary condition is also applied. And at the two ends in the x-direction as shown in Fig. 1,
the periodic boundary condition is used.

The governing equations (Eqs. (1), (4), (12), (13), (14) and (15)) coupling with the interfacial conditions (Eqs. 16 and 17)
complete the mathematical description for our physical problem. The unknown variables in both the fluid and the solid
phases are the velocity, pressure and stress, which can be solved simultaneously by an ALE finite element method (FEM).
In the ALE method, the mesh is allowed to move with a given mesh velocity
vm ¼
@xðn; tÞ
@t

����
n

; ð18Þ
where n is a referential mesh point and x is its physical coordinate. This mesh velocity does not necessarily follow the mate-
rial movement [13]. It is convenient to design an appropriate mesh movement strategy to track the moving object accurately
without degrading the mesh quality. The mesh velocity may be obtained by solving an elliptic equation
r � ðkervmÞ ¼ 0; ð19Þ
where ke is the inverse of the local element volume [3]. The mesh velocity may be set to be zero at the moving solid walls. At
the fluid–solid interface, the mesh velocity is required to follow the interface, however, is also allowed to slip along the tan-
gential direction, which corresponds to
ðvm � VsÞ � n ¼ ðvs � VsÞ � n; ð20Þ
ðvm � VsÞ � t ¼ 0; ð21Þ
where Vs is an average velocity of the moving particle (a fixed vector for a given particle at a certain time instant), n and t are
the unit normal and tangential vectors of the interface.

In the moving mesh frame, the variables are defined based on the referential mesh n, leading to a different evaluation for
the material derivative
D
Dt
¼ @

@t
þ v � r ¼ @

@t

����
n

þ ðv � vmÞ � r: ð22Þ
Denote XðtÞ as the computational domain at a given instant t 2 ½0; T�, which contains the fluid domain Xf ðtÞ, the solid domain
XsðtÞ. The boundaries of the fluid and solid domain are @Xf ðtÞ and @XsðtÞ, respectively. Therefore, we can discretize the gov-
erning equations following the standard Galerkin formulation [1,3]
Z

X
Re

Dv
Dt
� ~v � pr � ~v þ s : r~v

� �
dX ¼ 0; ð23ÞZ

X
�ðr � vÞ~pdX ¼ 0; ð24ÞZ

Xf

fsf � ðrvf þ ðrvf ÞTÞg : ~sdX ¼ 0; ð25Þ
Z

Xs

Ca
Dss

Dt
þ ssðrvsÞT þ ðrvsÞss

� �
� ðrvs þ ðrvsÞTÞ

� �
: ~sdX ¼ 0; ð26Þ



2136 T. Gao, H.H. Hu / Journal of Computational Physics 228 (2009) 2132–2151
where ~v, ~p and ~s are test functions. In our implementation, a mixed finite element is used, where different interpolation func-
tions are chosen for different unknown variables, which satisfies the LBB condition [3]. The discrete solution for the fluid
velocity is approximated by piecewise quadratic functions which is continuous all over the domain (P2). However, The solu-
tions of the pressure and stress are assumed to be continuous only in either fluid (Xf ) or solid domain (Xs). At the fluid–solid
interface @Xs, only the traction force is required to be continuous (Eq. (17)). Thus, discontinuities are allowed for the pressure
and stress components across the interface. Within either Xf or Xs, the discrete solution for the pressure is piecewise linear
(P1) and the discrete solution for the stress is piecewise quadratic (P2). For this type of mixed finite elements, it is known
that when Re is small, the numerical solution of the flow field can achieve 3rd order accuracy in space [34]. For this study, the
temporal descretization implemented in the solver is a 2nd order finite difference scheme.

The governing equations for both the fluid and solid phases can be reduced to a similar nonlinear system of algebraic
equations which is solved by a modified Newtonian–Raphson algorithm [3]. Specifically, in each non-linear iteration, a linear
system
Fig. 2.
particle
T1 T2 0
U1 U2 P

0 PT 0

0
B@

1
CA

s

v
p

0
B@

1
CA ¼

Ress

Resu

Resp

0
B@

1
CA
is solved by a generalized minimal residual (GMRES) method [35], where all submatrices are sparse. An incomplete LU (ILU)
preconditioner [36] is used to accelerate the convergence.

3. Numerical results and analysis

Initially, the flow field and the particle are assumed to be at rest. The particle is circular in the unstressed state. The
bounding walls of the channel are set to a given velocity to start the simulation. When the shear flow is developed inside
the channel, the particle experiences transient deformation where elastic waves can be observed propagating inside the so-
lid. The particle then gradually reaches an equilibrium elliptic shape. The dynamics of the particle deformation is governed
by the coupling of the elasticity of the Neo–Hookean material with the hydrodynamics of the bulk viscous fluid. As seen from
Eqs. (12)–(15), two dimensionless numbers Re and Ca completely describe the flow around and deformation inside the solid
particle.

For our problem, the size of the channel is assumed to be large enough with respective to the particle size so that the
particle deformation is unaffected by the outer boundaries. To examine the influences of the outer boundaries on the results,
we computed cases for H=dp changing from 4 to 16, and found that when H=dp > 6, the computed equilibrium shape of the
particle does not have any noticeable difference. Therefore, we choose H=dp ¼ 8 for the computed cases shown in this
section.

3.1. Validation of computational codes

Fig. 2(a) shows the equilibrium particle shape at Re ¼ 0:5 and Ca ¼ 0:2. The arrows represent velocities of material ele-
ments at the particle surface. Obviously, after the equilibrium shape is achieved, the material inside the particle experiences
a tank-treading motion, which is similar to the motion of fluid vesicles enclosed by incompressible membrane in viscous
shear flow. As shown in Fig. 2(b), equilibrium shapes of the particle are compared by using different mesh sizes and time
steps. ‘‘�” represents the result on a coarse mesh with 100 nodes along the particle surface, while ‘‘+” the result on a refined
mesh with 150 nodes. The time step for the coarse mesh is Dt ¼ 0:001 s and the refined mesh Dt ¼ 0:0005 s. The comparison
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Elastic particle deforms in a viscous shear flow at Re ¼ 0:5 and Ca ¼ 0:2. (a) Equilibrium particle shape. The velocities of the material elements at the
surface are shown as the arrows. (b) Mesh resolution test. ‘‘�” represents result on a coarse mesh; ‘‘+” represents the result on a refined mesh.
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Fig. 3. Fitting of a computed equilibrium particle shape, shown in Fig. 2, into an ellipse. ‘‘�” represents the computed result and the solid line represents the
fitted ellipse.
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indicates that the particle shape is independent of mesh size and time step; thus the solution has converged. However, when
dealing with larger deformations with higher values of Ca, the particle will be more elongated with sharper tips. The refined
mesh with 150 nodes along the particle surface and small time step (Dt 6 0:0005 s) are employed for the simulations pre-
sented in this section. The number of the elements used in this simulation is about 12,000, and the total number of un-
knowns is about 125,000.

The equilibrium shape of the deformed particle can be fit into a standard ellipse
½ðx� x0Þ cos /þ ðy� y0Þ sin /�2

a2 þ ½�ðx� x0Þ sin /þ ðy� y0Þ cos /�2

b2 ¼ 1;
where ðx0; y0Þ is the center of the ellipse, / is its orientation, a and b are the semimajor and semiminor axis, respectively. As
shown in Fig. 3, the particle shape fits perfectly into a standard ellipse when Ca is small.

After the particle deforms into the equilibrium shape, we stop the flow by setting the wall velocity U ¼ 0. The flow field
decays rapidly. Due to the elasticity of the Neo–Hookean material, the deformed particle gradually recovers its unstressed
circular shape as the fluid viscous stress applied at the particle surface dies down. This transitional process is shown in
Fig. 4(a–f) at six consecutive time instants. It is observed that the particle has already reached its equilibrium shape at
t ¼ 1:0 s. After stopping the moving wall at t ¼ 4:0 s, the particle quickly recovers initial circular shape. The recovered cir-
cular shape in Fig. 4(f) is identical to its initial unstressed shape.

3.2. Elastic waves in transient deformation

When the shear flow field is being developed in the channel, the particle first experiences a transient deformation when
the particle is stretched and elongated, similar to Fig. 4(a) and (b). During the transient deformation, it is observed that sym-
metric elastic waves propagate inside the particle with a certain characteristic wave speed. For linear elastic material, it is
well-known that the elastic waves travel at a speed determined by cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
gs=qs

p
[37]. For the computed case, we choose

gs ¼ 500 Pa and qs ¼ 1:0 g=cm3. Therefore, the characteristic wave speed is cs ¼ 22:4 cm=s.
To show these elastic waves, we monitor flow variables at certain fixed points inside the particle during its deformation.

Fig. 5(a) shows the variation of v velocity component with time at a sampling point close to the particle center. The velocity
fluctuation indicates a dominant frequency. A spectrum analysis is performed in Fig. 5(b) where the dominant frequency is
found to be f0 ¼ 53:8 Hz, which corresponds to a wave period T0 ¼ 1=f0 ¼ 0:0186 s. During the sampling time (from t ¼ 0:1 s
to t ¼ 0:2 s), it is reasonable to choose the characteristic wave length as the shorter diameter of the deformed particle
L0 ¼ 2�b � 0:420 cm. Therefore, we can estimate the characteristic wave speed as c�s ¼ L0=T0 ¼ 22:6 cm=s, which agrees very
well with the theoretical value of cs mentioned above.

To better visualize the elastic waves in the particle, we plot the isolines of the v velocity component in Fig. 6(a–f) during
approximately one wave period as marked in Fig. 5(a) from t = 0.135 s to t = 0.153 s, which clearly show a symmetric wave is
propagating inside the particle.

In computation, the elastic wave propagation has to be accurately captured to resolve the transient deformation of the
particle. As a result, we have to select time steps to be much smaller than the characteristic wave period T0.

3.3. Equilibrium shape as a function of the Capillary number

Next, we investigate the effects of Ca on the equilibrium particle shapes in the Stokes flow regime. In the limit of small Re,
it can be seen from Eqs. (12)–(15) that Ca will be the only dimensionless number which characterizes the elastic
deformation.
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Fig. 7 compares the equilibrium shapes of the particle at three different values of Re (Re ¼ 0:05;0:125, and 0:5), when
Ca ¼ 0:2. It is observed that the shapes at Re ¼ 0:125 and Re ¼ 0:05 are not distinguishable, while the shape at Re ¼ 0:5 is
slightly different from the other two cases. Thus, we confirm that Re ¼ 0:125 is small enough for effects of Re to be negligible.

Fig. 8(a–d) show the equilibrium particle shapes at Ca ¼ 0:02;0:08;0:2;0:5. In our computation, the fluid viscosity lf and
the shear rate _c are fixed. Thus, small Ca corresponds to large shear modulus gs, which means the material is stiff, and vice
versa. In Fig. 8(a), the deformation is very small. The particle is similar to a rigid body. Fig. 8(d) indicates that the deformed
particle still fits into an ellipse even at very large deformation. The deformation can be quantified by a dimensionless
parameter
D ¼ a� b
aþ b

; ð27Þ
which is commonly used to characterize the deformation of fluid vesicles[22,26] and droplets [5,38,39]. The computed var-
iation of the deformation parameter with the Capillary number Ca is shown in Fig. 9(a). From the figure, it is clear that there
is a linear regime where D ¼ Ca when Ca < 0:3. The orientation of the deformed particle is shown in Fig. 9(b). A similarly
linear relationship for this orientation as a function of Ca is observed. It is expected that when Ca tends to zero, the maximum
orientation approaches 45�. During its deformation, it is found that the transient shapes of the particle can be fitted into a
series of ellipses. Therefore, we can track the temporal evolution of the deformation parameter D, as shown in Fig. 10. It is
observed that D reaches its equilibrium value monotonically.
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To check the total mass conservation in the deformed particle, we evaluated the relative change of the particle volume
(area in 2D), 1� A=A0 ¼ 1� 4ab=d2

p , which is plotted in Fig. 11 at different values of Ca. A=A0 is the ratio of the area of the
ellipse to that of the initial circle. In general, the area of the particle is well conserved within numerical error, although a
jump (still within 0:5%) is observed at Ca ¼ 0:65. At large deformations, such a large error does not necessarily imply that
the mass of the particle is not as well conserved, since the actual shape of the deformed particle starts to deviate from the
standard ellipse.

3.4. Perturbation analysis in the limit of small Capillary number

In the Stokes flow regime, it is possible to carry out a perturbation analysis in terms of small parameter Ca to get the ana-
lytical solution to the flow field and the particle deformation. At the leading order (Oð1Þ), the particle is circular and expe-
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Fig. 8. Equilibrium particle shapes at Re ¼ 0:125: (a) Ca=0.02; (b) Ca=0.08; (c) Ca=0.2; (d) Ca=0.5. ‘‘�” represents computed results, and the solid line
represents fitted ellipses.
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riences a rigid body rotation. Fig. 12 shows a 2D circular cylinder rotating clockwise in the viscous shear flow with angular
velocity x. Bretherton [40] obtained the Stokes flow solution for this rotating cylinder. The dimensionless stream function w
is given by
wðr; hÞ ¼ 1
2

r2 sin2 h� 1
4

2ð1� 2xÞ ln r þ 1þ 1
r2 � 2
� �

cos 2h

� 	
: ð28Þ
The dimensionless velocity field is
v r ¼
1
r
@w
@h
¼ 1

2r
r � 1

r

� �2

sin 2h; ð29Þ

vh ¼ �
@w
@r
¼ 1

2
1� 2x

r
� r

� �
þ 1

2r
r2 � 1

r2

� �
cos h: ð30Þ
Here we neglect the subscript ‘‘f” for solutions in the fluid. For a freely rotating cylinder, it is shown that x ¼ �1=2 to guar-
antee zero net torque [40]. With x ¼ �1=2, the pressure field is given as
pðr; hÞ ¼ p1 �
2
r2 sin 2h: ð31Þ
At the particle surface (r ¼ 1), the stress distribution can be evaluated as
rrr ¼ rhh ¼ �p1 þ 2 sin 2h; ð32Þ
rrh ¼ 2 cos 2h: ð33Þ
To derive the induced deformation due to this stress distribution at the particle surface, the solutions in the solid can be ex-
panded in the powers of Ca
v ¼ v0 þ Ca	 v1 þ OðCa2Þ; ð34Þ
s ¼ s0 þ Ca	 s1 þ OðCa2Þ; ð35Þ
p ¼ p0 þ Ca	 p1 þ OðCa2Þ: ð36Þ
The subscript ‘‘s” for solutions in the solid is also neglected for convenience.
At the 0th order (Oð1Þ), we have
v0 ¼ �1
2

reh; ð37Þ

� rp0 þr � s0 ¼ 0; ð38Þ
and 0th order extra stress tensor s0 has to be determined by the constitutive equation at the 1st order,
s0
D

¼ rv1 þ ðrv1ÞT : ð39Þ
As an alternative way to resolve s0 by the perturbation analysis, we perform a numerical computation at a small Ca to obtain
the information for v1. At Re ¼ 0:125 and Ca ¼ 0:004, Fig. 13(a) and (b) plot the isolines for the u and v velocity component,
respectively. Inside the particle, as expected at the leading order, the u velocity component is proportional to y, while the v
velocity component is proportional �x, which indicates a perfect rigid body rotation. Next, we examine the velocity profile
re
θe

θ

Fig. 12. Schematic of a 2D rotating cylinder in Stokes shear flow.
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inside the particle excluding this rigid body rotation. Fig. 13(c) and (d) plot the velocity deviation from the rigid body rota-
tion. According to the perturbation expansion, this deviation should be dominated by the 1st order velocity solution v1. From
the plots in Fig. 13(c) and (d), it is clearly observed that inside the particle, both u1 and v1 components are linear in x and y.
Therefore, it is reasonable to assume that v1 take the form
v1 ¼ ðc1xþ c2yÞex þ ðc3x� c1yÞey; ð40Þ
where ci are unknown constants to be determined, and Eq. (40) satisfies the continuity equation. Physically, inside the solid
particle it is expected that in addition to the rigid body rotation, a secondary motion corresponding to the velocity field given
by Eq. (40) needs to be established to generate a stress field at the 0th order to balance the viscous force applied by the bulk
fluid at the particle surface.

In the cylindrical coordinates, the velocity profile in Eq. (40) can be written as
v1 ¼ r c1 cos 2hþ c2 þ c3

2


 �
sin 2h

h i
er þ r

c3 � c2

2


 �
� c1 sin 2hþ c2 þ c3

2


 �
cos 2h

h i
eh: ð41Þ
The 0th order steady state solutions for the stress components and the pressure are derived in Appendix B. The components
of the total stress tensor are found to be
r0
rr ¼ �GðrÞ þ AðrÞ � 2c1 sin 2hþ ðc2 þ c3Þ cos 2h; ð42Þ

r0
hh ¼ �GðrÞ � AðrÞ þ 2c1 sin 2h� ðc2 þ c3Þ cos 2h; ð43Þ

r0
rh ¼ �2c1 cos 2h� ðc2 þ c3Þ sin 2h; ð44Þ
where AðrÞ and GðrÞ are related functions of the radial position only.
At the fluid–solid interface, it is required that r0

f � n ¼ r0
s � n. Matching the solutions in Eqs. (42)–(44) evaluated at the

particle surface with Eqs. (32) and (33), we have
c1 ¼ �1; c3 ¼ �c2;�Gð1Þ þ Að1Þ ¼ �p1: ð45Þ
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With velocity solutions at both 0th and 1st order in the solid, we can solve the pathline of a material element by using
v ¼ ðdr=dtÞer þ ðrdh=dtÞeh. Substituting Eq. (45) into Eq. (41) and then combining the 0th order solution in Eq. (37), we
can get
Fig. 14
deform

Fig. 15
r ¼ 1.
dr
dt
¼ �Ca cos 2hð Þr þ OðCa2Þ; ð46Þ

dh
dt
¼ �1

2
þ Caðsin 2h� c2Þ þ OðCa2Þ: ð47Þ
Eqs. (46) and (47) can be combined to eliminate the time, and the resultant equation is integrated to obtain the pathline of a
material element inside the particle
r2 1
2
þ c2Ca� Ca sin 2h

� �
þ OðCa2Þ ¼ Constant: ð48Þ
Eq. (48) represents the trajectory of an ellipse with the semimajor and semiminor axis given by
a ¼ rmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A0

1þ 2Caðc2 þ 1Þ

s
¼

ffiffiffiffiffiffiffiffi
2A0

p
ð1� Ca� c2CaÞ þ OðCa2Þ;

b ¼ rmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A0

1þ 2Caðc2 � 1Þ

s
¼

ffiffiffiffiffiffiffiffi
2A0

p
ð1þ Ca� c2CaÞ þ OðCa2Þ;
where A0 is a constant in Eq. (48) associated with a particular material element at the particle surface. The deformation
parameter D is then evaluated by
D ¼ 2
ffiffiffiffiffiffiffiffi
2A0
p

Caþ OðCa2Þ
2
ffiffiffiffiffiffiffiffi
2A0
p

ð1� c2CaÞ þ OðCa2Þ
¼ Caþ OðCa2Þ: ð49Þ
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. An illustration of fluid force applied at different points on the particle surface: A (h ¼ 0�), B (h ¼ 90�), C (h ¼ 180�) and D (h ¼ 270�). The particle
s symmetrically along the dashed line with an orientation of h ¼ 45� .
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Table 1
Comparison of the numerical results and perturbation solutions.

Perturbation Numerical

sxx þ syy 0.0 �0.01
sxy 2.0 2.08
/ 45� 44.98�
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At the leading order, D ¼ Ca, which is exactly observed numerically in Fig. 9(a). It is also noticed that the unknown constant
c2 does not affect the particle shape at the leading order. Additionally, when r reaches rmax, sin 2h ¼ 1 which corresponds to
the orientation angle of 45�. Numerical data shown in Fig. 9(b) at the limit of small Ca agrees with this theoretical observa-
tion. In Fig. 14, applied fluid forces rf � n are plotted at four points (A, B, C, D) along the particle surface, corresponding to
h ¼ 0�;90�;180�;270�, respectively. Here the constant pressure p1 is neglected because it does not contribute to the particle
deformation. Under the action of such a force distribution, the particle tends to deform symmetrically along the dashed line
indicated in Fig. 14. The deformed particle will have an orientation at 45�.

We can also examine the pressure and the stress field at Re ¼ 0:125 and Ca ¼ 0:004. Fig. 15 indicates that the numerical
solution for the pressure distribution along the particle surface agrees with the Stokes solution (Eq. (31)) with p1 ¼ 0. Fur-
thermore, the extra stress s0 at the boundary can be transformed to Cartesian coordinate
Fig. 16.
the she
s0 ¼ Að1Þ cos 2hðexex � eyeyÞ þ ð2þ Að1Þ sin 2hÞðexey þ eyexÞ: ð50Þ
Although Að1Þ is still unknown, the value of sxx þ syy should be zero and the mean value of sxy should be 2, which are all
consistent with the numerical results listed in Table 1. The orientation of the deformed particle is computed as 44:98� which
is in close agreement with the theoretical value.

3.5. Particle–particle interactions in a shear flow

In this section, we consider the interaction between two deformable particles in a shear flow at small Re. As shown in
Fig. 16, two identical circular elastic particles (particle A and B) are initially placed symmetrically in the channel. The con-
ditions for the simulation in this section correspond to Re ¼ 0:1 and Ca ¼ 0:25. The periodic boundary condition is applied in
the x-direction, and the initial distance between the two particles (2g0) is chosen as dp.

Fig. 17 shows simulation results. In Fig. 17(a) and (b), after the shear flow has been developed, the circular particles
quickly deform to an elliptic shape which is similar to the single particle situation. At the same time, the two particles move
toward each other. During the translation, it is observed particle–particle interactions occur periodically with two interact-
ing modes. At first, the two particles experience a ‘‘roll over” mode shown in Fig. 17(c) and (d). After the first two encounters,
the interacting particles change to a ‘‘bounce back” mode as shown in Fig. 17(e) and (f). In this mode, the two particles move
around separately in the left and right half of the channel. Eventually, both particles tend to their own equilibrium positions
in the middle of the channel with an equal distance, consistent with the single particle situation presented earlier.

Different phases of the particle–particle interaction can be observed clearly by plotting the particle’s y-position as func-
tions of time, as shown in Fig. 18(a). At first, two particles come together quickly due to the initial deformation. Then as par-
ticles encounter each other whilst moving with the flow, they experience the ‘‘roll over” interacting mode (Fig. 17(c and d))
indicated as two peaks in Fig. 18(a) at around t ¼ 3 s and t ¼ 10 s. When t > 20 s, two particles move across the center line of
Schematic for two elastic particles interacting in Stokes shear flow. The arrows at the particle centers represent the initial movements induced by
ar flow.
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Fig. 17. Particle–particle interactions in a shear flow. (a) and (b): initial deformation; (c) and (d): ‘‘roll over” interacting mode; (e) and (f): ‘‘bounce back”
interacting mode.

2146 T. Gao, H.H. Hu / Journal of Computational Physics 228 (2009) 2132–2151
the channel periodically when they approach each other, which corresponds to a ‘‘bounce back” interacting mode (Fig. 17(e
and f)). At later times (t > 40 s), the particle interaction is greatly weakened, and two particles tend to their corresponding
equilibrium positions, which can also be visualized by plotting particle positions in the x-direction as a function of time in
Fig. 18(b). The centers of the equilibrium particles are ð2;2Þ for particle A, and ð6;2Þ for particle B. Thus, particles finally settle
down in the periodic channel with an equal distance of separation. The final equilibrium shape of the particles is plotted in
Fig. 19. This shape exactly matches that from the single particle simulation under the same flow conditions. This comparison
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Fig. 18. (a) Variations of particle’s y-position as functions of time. (b)Variations of particle’s x-positions at later times when the particles settle into
equilibrium.
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Fig. 19. Comparison of the equilibrium shapes of particles. ‘‘�” represents the shape of particle A at t ¼ 60:0 s. The solid line represents the equilibrium
shape of the particle in the single particle simulation at the same conditions (Re ¼ 0:1 and Ca ¼ 0:25).
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also indicates that the computational domain in the single particle simulations is long enough such that the dynamics of the
particle deformation would not be affected if a longer channel length were to be used.

The mechanisms of hydrodynamic interactions can be explained by the pressure distribution in the flow field. As shown
in Fig. 20(a and b), for the ‘‘roll over” mode, a high pressure area can be seen between the two particles. From this high pres-
sure, there is a repulsive force keeping the particles apart. However, viscous forces applied by the bulk fluid can still over-
come this repulsive force to push the particles into each other. In Fig. 20(c) and (d), however, a low pressure area is found in
between the particles when particle A and B move close, which sucks them toward each other at first. When particles move
across the center line of the channel, the applied shear forces change directions and gradually drag them apart.
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Fig. 20. Isolines of the pressure distribution at different times. (a) t = 2.0 s; (b) t = 2.8 s; (c) t = 15.0 s; (d) t = 16.6 s.
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Fig. 21. The finite element mesh around two approaching particles corresponding to t ¼ 2:8 s from Fig. 20(b).
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As shown in Fig. 21 where two particles get close to each other at t ¼ 2:8 s, the mesh generator in our solver is designed to
refine the mesh adaptively in the region where particles are approaching each other [3]. There are always sufficiently fine
elements in this region with the mesh size smaller than the minimum gap size between the approaching particles.

3.6. Effects of the Reynolds number on the equilibrium particle shape

So far, we have focused on situations at low Re. It is also interesting to investigate the effects of Re on the equilibrium
particle shape. Fig. 22(a–d) shows equilibrium particle shapes at various Reynolds numbers with the Capillary number fixed
at Ca ¼ 0:2. We can observe that when Re ¼ 5 (Fig. 22(a)), the equilibrium particle shape is slightly deviated from a standard
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Fig. 22. Equilibrium particle shapes at Ca ¼ 0:2: (a) Re = 5; (b) Re = 10; (c) Re = 20; (d) Re = 50.
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ellipse. When Re is further increased to Re ¼ 10 (Fig. 22b) and Re ¼ 20 (Fig. (22)(c)), the particle becomes more elongated
with two ends of large curvature pointing upwards and downwards. At Re ¼ 50 (Fig. (22)(d)), horn-shaped corners appear
at the particle ends. These shapes are very similar to the situations of liquid capsules with elastic membranes in a viscous
shear flow at moderate Re [30]. It is expected that the coupling of Re and Ca would give rise to more complicated material
behaviors of the suspension.

4. Conclusion

In this paper, we developed a new finite element technique to simulate 2D elastic particles deforming in viscous fluid
flows. In the solid, an evolution equation for the Eulerian Almansi strain tensor is derived to describe the elastic deformation.
A constitutive equation is thus established for an incompressible ‘‘Neo–Hookean” material. By using an ALE finite element
formulation, we implemented a monolithic solver to solve both the fluid and the solid phase simultaneously. It is demon-
strated that the new ALE finite element scheme is stable, accurate and robust for simulations of fluid–structure interactions.

Using the new ALE finite element scheme, we investigated deformations of elastic particles in a Newtonian viscous shear
flow. It was found that

(1) In the Stokes flow regime, after the initial transient deformation, the particle eventually deforms into an equilibrium
elliptic shape. The material points inside the particle experience a tank-treading like motion with a steady velocity
field. For the deformed particle, the deformation parameter D has been characterized as a function of Ca. For
Ca < 0:3, it is found that D ¼ Ca, which agrees with theoretical results from a perturbation analysis in the limit of small
Ca.

(2) It is observed that the elastic waves propagating inside the particle play an important role during its transient defor-
mation. The speed of the elastic waves may be much faster than the flow velocity. Therefore, the time step used in the
simulation has to be small enough to appropriately resolve these waves.

(3) In the simulation of two particles in a shear flow, complicated interactions between particles are observed. Two par-
ticles eventually settle into their corresponding equilibrium positions with an identical elliptic shape which exactly
matches the deformed shape of the single particle under the same flow conditions.

(4) At moderate Re, the equilibrium particle shape can deviate significantly from a standard ellipse, which indicates com-
plicated material behaviors induced by the coupling of Re and Ca.
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Appendix A. Evolution equation for the Eulerian Almansi strain tensor

The Cartesian index form of the displacement–velocity relationship, Eq. (7) or Du=Dt ¼ v, reads
@ui

@t
þ vk

@ui

@xk
¼ v i: ðA:1Þ
The gradient of Eq. (A.1) takes the form
@

@t
@ui

@xj

� �
þ vk
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@xk

@ui

@xj

� �
þ @vk

@xj

� �
@ui

@xk

� �
¼ @v i

@xj
: ðA:2Þ
Adding the transpose of Eq. (A.2) to itself, we get
@

@t
@ui

@xj
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: ðA:3Þ
With the definition of the velocity in Eq. (A.1), it can be shown that
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Adding Eq. (A.4) to Eq. (A.3) and rearranging the terms in the resulting equation, we have
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Notice that
1
2

@ui

@xj
þ @uj

@xi
� @ul

@xi

@ul

@xj

� �
¼ Sij ðA:6Þ
is the Almansi strain tensor. Therefore, we get
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Appendix B. Zeroth order solution for the extra stress and pressure inside the solid

In this section, we solve the 0th extra stress tensor from the constitutive equations in the solid. The component form of Eq.
(39) for s0 in the cylindrical coordinates reads
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where the material derivative is defined by D
Dt ¼ @

@t þ v0
r
@
@r þ

v0
h

r
@
@h. Using the 0th order velocity solution v0 ¼ � 1

2 reh for a freely
rotating cylinder and at the steady state, Eqs. (B.1)–(B.3) reduce to
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Since the incompressibility requires that r � v1 ¼ 1
r
@ðrv1

r Þ
@r þ 1

r
@v1

h
@h ¼ 0, we can further simplify Eqs. (B.4)–(B.6) as
@srr

@h
¼ �4

@v1
r

@r
; ðB:7Þ

@srh

@h
¼ �2

1
r
@v1

r

@h
þ @v1

h

@r
� @v1

h

@r

� �
; ðB:8Þ

srr þ shh ¼ 0: ðB:9Þ
Now putting the 1st order velocity solution of Eq. (41) into Eqs. (B.7) and (B.8), we find
srr ¼ �shh ¼ AðrÞ � 2c1 sin 2hþ ðc2 þ c3Þ cos 2h; ðB:10Þ
srh ¼ BðrÞ � 2c1 cos 2h� ðc2 þ c3Þ sin 2h: ðB:11Þ
Using the solutions s0 from Eqs. (B.10) and (B.11), we can also solve p0 from Eq. (38) which reduces to
@p0
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@srr
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r
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with the periodic boundary condition p0ðr; hþ 2pÞ ¼ p0ðr; hÞ. The solution to Eqs. (B.12) and (B.13) takes the form
p0 ¼ GðrÞ; ðB:14Þ
where GðrÞ and AðrÞ are related by G0 ¼ A0 þ 2A=r. The periodic boundary condition requires BðrÞ ¼ B0=r2. Due to the fact that
the stress has to be finite inside the particle, we have B0 ¼ 0.
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